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1.0 PREFACE

This report was prepared under Contract DACA76-91-C-0026 for
the U.S. Army Topographic Engineering Center, Fort Belvoir,
Virginia 22060-5546 by Stottler Henke Associates, Inc., Belmont,
California 94002. The Contracting Officer’s Representative was
James A. Shine.




2.0 SUMMARY

The overall objective of Phase I was to develop a prototype
intelligent Tactical Decision Aids (TDA) neural network system
through the use of an expert system to neural network translator.
From the resulting prototype network, the performance of the
complete TDA system could be determined. The Phase I results
absolutely demonstrated the feasibility of this concept and cleared
the way for development of a complete system in Phase II.

Current TDA systems require too much expertise from the user
and run too slowly for use in tactical situations, when time is in
short supply. In tactical situations, terrain is an extremely
important factor and represents one of the main inputs to these
systems.

Our approach was to first choose a particular domain. The
Airborne Avenues of Approach (AAA) Planning problem is a
significant one in the TDA class of problems. While initial route
planning is performed prior to the start of the mission, a need
exists to automate and speed the process. Additionally a system
which could meet the rigorous real-time requirements of an on-board
AAA re-planner would prove enormously beneficial in many time-
critical tactical situations.

The relevant knowledge was gathered and the system designed.
We 1implemented the prototype solution with expert system
technology. We then completely translated that system to a neural
network representation using our automatic translator. The
network’s performance was evaluated using test cases and a neural
network simulator. Additionally, the performance of the completed
Phase II system was estimated. The time to completely plan a route
in a 100 mile by 100 mile area was conservatively estimated to be
3 seconds with a $4000 specialized board and a 486-based PC.

There are many potential applications of this research. The
most direct application will be for Airborne Avenues of Approach
Planning. This technology could be applied to many route planning
problems including Avenues of Approach for ground units. The
techniques used here would benefit any application involving the
intelligent evaluation of a large number of items. Examples
include threat evaluation and image understanding. Finally, the
generic translator can be used to allow almost any expert system to
be translated to a neural network and thus receive the combined
benefits of each technology.




3.0 PROJECT OBJECTIVES

The overall objective of Phase I was to develop a prototype
intelligent Tactical Decision Aids (TDA) neural network system.
This was accomplished by developing a prototype expert system, and
converting it to a neural network representation using Stottler
Henke Associates, Inc.’s (SHAI) automatic expert system to neural
network translator. From the resulting prototype network, the
performance of the complete TDA system could be determined. This
includes the required number of neurons and interconnections, and
the processing speed required to meet real-time constraints. The
Phase I tasks absolutely demonstrated the feasibility of this
concept and cleared the way for development of a complete system in
Phase II. The Phase II1 Design is given in Appendix A.

3.1 Identification and Significance of the Problem

Current TDA systems require too much expertise from the user
and run too slowly for use in tactical situations, when time is in
short supply. In order for the system to require 1less user
expertise, raw data must be accessed directly by the systems,
without any intervention or processing by the user. 1In tactical
situations, terrain is an extremely important factor and represents
one of the main inputs for the systenms. Terrain data can be
accessed directly from the Geographic Information System (GIS)
which stores it along with .other data, requiring much 1less
involvement from the user.

The opportunity presented by this project 1is to apply
intelligent methods which utilize both terrain information stored
in a GIS, and other information available in real-time such as
weather, field observations, and remote sensor system data. Such
an intelligence can be easily approximated with expert system
technology. However, the expert system will run too slowly to meet
the rigorous real-time constraints of a tactical situation. It is
also very difficult to tune the approximation to a completely
correct solution. Additionally, expert systems are not fault-
tolerant, adaptable, or generalizing. But, if the expert system
approximation could be transformed into a neural network and its
performance tuned through training, then the network would possess
the high degree of intelligence easily implemented with expert
system technology, run in real-time on neural network hardware, and
realize other benefits of neural networks such as fault-tolerance,
adaptation, and the ability to generalize.

Of course for the network to process the needed information
most efficiently, it should also be in a parallel form. This is
especially true for the terrain data, since it drives the decision
processes of the TDA systems and also represents a very large
volume of information. If the terrain data is available before the
TDA systems must operate, the GIS information can also be converted




to a neural form so both the inference and the information upon
which it operates are parallelized.

A GIS represents terrain data as a set of polygons, each of
which has borders in two- or three- dimensional space.
Additionally, associated with each polygon are attributes of the
piece of terrain the polygon represents. The polygons can be
represented in the artificial intelligence (AI) knowledge
representation of a frame in a straightforward manner. These
frames can then be linked to the expert system and the entire
package translated to a neural network for parallel processing.
Such a translation could occur almost as fast as the data can be
transferred from the GIS.

3.1.1 Airborne Avenues of Approach

Airborne Avenues of Approach (AAA) Planning is a significant
problem in the TDA class of problems. While initial route planning
is performed prior to the start of the mission, a need exists to
automate and speed the process. Additionally a system, which could
meet the rigorous real-time requirements of an on-board AAA re-
planner, would prove enormously beneficial in many time-critical
tactical situations.

The AAA Planner needs the high 1level of intelligence
representable with expert system technology both from a correctness
and from a understandability standpoint. Such a system also
requires enormous data processing which indicates a need for
parallelization to achieve the required speed. In addition, as in
any fielded airborne, tactical system, fault-tolerance is extremely
important. The AAA Planner is an ideal candidate for the use of
SHAI'’s expert system to neural network translation technology.

3.1.2 Characteristics of Expert Systems

Expert systems represent knowledge as an explicit collection
of facts, rules, and frames and provide inference procedures for
manipulating this information. Because the facts, rules, and
frames are not encoded as programs, knowledge can be added to the
expert system knowledge-base or changed without affecting other
existing knowledge. 1In addition, because the knowledge is declared
explicitly rather than embedded in application procedures, it is
straightforward to understand and can be used for many diverse
purposes. This eliminates the need and potential problem of
storing facts multiple times, once for each type of application.
A declarative representation allows knowledge to be extended by a
reasoning process and accessed by introspective programs, enabling
the system to answer questions about what it knows.

The major drawback of expert systems is that reasoning over
declarative information tends to be inefficient. This is because
the Xknowledge 1is represented independent of procedures for
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utilizing it, and because expert systems are generally run on
serial single processor machines. In addition, altering an
inference engine and/or an expert system to directly run on a
parallel processor machine is extremely difficult. Devising a
general method for dividing a problem into sub-problems which can
be solved on multiple processors and then recombining their
solutions is not a well-understood process.

Several other shortcomings arise because of the static nature
of expert systems. Expert systems do not exhibit adaptable
behavior. For example, if an expert system derives an answer and
receives feedback that the answer is incorrect, we would like the
expert system to change its behavior for the future. 1In addition,
expert systems are unable to generalize from a set of examples in
an inductive manner. While machine learning offers great potential
in both these areas, it is still very much a difficult research
topic. Human intervention is still required to modify an expert
system’s characteristics.

Expert systems are intolerant to variations in input.
Consider, for example, the following expert system rule:

if A and B and C then D

The designer of the expert system may have assumed that full
knowledge of the truth of A, B, and C would be available at the
time this rule was checked. If A, B and C are available and true,
D can be concluded. It may be the case, in some unusual
circumstance, that only two of these three antecedents are known.
While we may prefer the expert system to compromise and conclude
that D is almost true, it is unable to conclude anything.

Finally, expert systems are not fault tolerant during hardware
failure. As software, an expert system usually will crash
completely or produce unreliable results after a hardware failure.

3.1.3 Characteristics of Neural Networks

Neural networks are composed of simple analog processing
elements. Each processing element has any number of inputs and a
single output. The output value is computed according to the
following strategy:

1) Perform a weighted sum of the inputs,
2) Perform a simple function on that sunm.

The output of a pr.cessing element is connected to the inputs of
many other processing elements. Each connection has a weight
associated with it which is used in the weighted sum computation.

Some of the inputs to processing elements are connected to the
external world, as are some of the outputs. A neural network can
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learn if it is presented a set of inputs and a set of desired
outputs. The learning results by slightly changing the neural
network’s weights according to a learning algorithm.

Neural networks are a simple, but powerful parallel processing
paradigm, offering the potential for a very large number of
processing elements. Neural networks can be implemented in
hardware or simulated in software. Inplementation of a neural
network on a parallel processing machine is straightforward.
Implementation of.a neural network is generally accomplished by
dividing the processing elements among the available processors.
Each processor simulates the functioning and interconnections of
the processing elements allocated to it. By properly allocating
the processing elements, full wutilization of the multiple
processors is possible.

Unlike expert systems, neural networks are adaptable and fault
tolerant and can generalize solutions to problems. The primary
shortcoming of neural networ’ s is that they are difficult to design
and understand. This is bec.se the knowledge they use to solve
problems is represented by interconnection weights, which are un-
intuitive.

3.1.4 Opportunity

While expert systems are among the most common and successful
AI systems, their slowness and fragility prevent their application
directly to the Airborne Avenues of Approach Planner. However, by
translating a rule and frame based AAA Planner into a neural
network representation, performance 1is dramatically improved
through parallelization and we derive the combined benefits of
expert systems and neural networks. The performance improvement is
dramatic enough to permit operation of the AAA Planner on-board the
helicopter. The resulting system is adaptable, fault tolerant and
easy to understand because of its expert system origin. The neural
network representation can be implemented on parallel processing
machines or neural network hardware.

Currently, neural network hardware with a large number of
processing elements is available and orders of magnitude
improvements in this number can be expected periodically. The
combined processing power of these elements is much greater than
that of conventional super computers. For example, while the Cray
2 can process 35 million connections per second, a single low-cost
chip from Intel, the 80170NX, can process 2 billion connections per
second. Expert systems can take full advantage of this power with
the automatic expert system to neural network translation facility
now developed.

The opportunity is to greatly improve on-board tactical
decision making through the use of terrain data and other
environmental information processed with an intelligent AAA neural
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network developed through the use of an expert system translator
and training, which tunes the resulting network’s performance. The
expert system origin allows the final AAA neural network to possess
a degree of intelligence impossible from the use of neural network
technology alone.

3.1.5 Innovations

Significant innovations were applied to this project. First,
an Airborne Avenues of Approach Planner was developed utilizing
standard AI techniques. The concept of translating this into a
neural network is itself innovative. Few other researchers are
working on the problem of translating implemented expert systems to
a neural network representation. Furthermore, each binding for
each rule-object combination can be represented in parallel.
Finally, the combination of all the techniques to produce a working
expert system to neural network translator is not only innovative,
but many would have thought it impossible.

3.2 Statement of Objectives

Specifically, there were three technical objectives all of
which were met. A fourth objective, to improve the network’s
performance through training, was considered but 1later dropped
because the network’s performance did not need improvement.

1. Develop an intelligent TDA system using conventional expert
system technology.

2. Translate the expert system into a neural network.

3. Determine the performance of the complete TDA systen,
implemented in neural network hardware.




4.0 WORK DESCRIPTION
4.1 Approach

To achieve the primary project objective of developing an
intelligent system which aids in tactical decisions based on both
terrain data stored in a GIS and other environmental information,
we identified a number of tasks to be carried out over the Phase I
period. These tasks are listed below:

se s
1. Identify the TDA problem.
2. Perform knowledge engineering.

3. Translate the expert system to a neural network representation
using the automatic translator.

4. Demonstrate the Application
5. Design the Phase II System
6. Determine the Performance of the Final System

7. Write the Phase I Final Report.

Our approach was to first identify the TDA problem. We chose
a particular domain, determined what information was available and
what was considered a correct decision based on this information.
Second, the relevant knowledge was gathered and the system
designed. Third, we implemented the prototype solution with expert
system technology. We then translated that system to a neural
network representation using the automatic translator. The
network’s performance was evaluated using test cases and a neural
network simulator. Additionally, the performance of the completed
Phase II system was estimated. Finally, the effort and results
were documented in this Final Report.

4.2 Task Descriptions
4.2.1 Identify Tactical Decision Aids (TDA) Problem

This task consisted of a number of steps. First, the
particular domain was identified. Possibilities included supply
facilities location, sensor system site allocation, main battle
unit movement corridor identification, integrated air defense
planning, integrated defensive fire support planning, Joint
Surveillance and Target Attack Radar System (JSTARS) patrolling
patterns, smart weapons deployment, and Airborne Avenues of
Approach (AAA). Then, performance criteria were identified. This
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involved answering the following questions. What constitutes
correct decisions based on the terrain and other information
available? What are the real-time constraints? Wwhat information
is available on which to base decisions? Will the network be
directly connected to this source of information? Is the source of
information hardware parallel in nature? Additionally, sources of
domain knowledge had to be identified and training sets of data had
to be gathered for testing and training.

4.2.2 Knowledge Engineering

This task included both knowledge acquisition and the design
of the expert system. The following questions had to be answered:

‘'What conditions will the TDA face? What factors must be

considered? Using the answers to these questions and considering
that the expert system would be translated to a neural network, the
expert system was designed. Considerations included how best to
represent the knowledge to take advantage of the particular
benefits resulting from the neural network translation.

For example, each polygon of the terrain information was
represented as a frame. The polygon frame included slots to hold
the spatial information such as the polygon border information and
adjacent polygons, ground type, vegqtation, and other information
which could be used to make intelligent decisions.

The knowledge-based solution was implemented |using
Intellicorp’s KAPPA expert system development tool. The
implementation contained rules for intelligent tactical decision
making. For example, when determining the best terrain for a
helicopter avenue of approach, several factors were considered.
The terrain should be shielded from enemy weapons systems. Shadows
cast by the helicopter onto the terrain should be difficult to spot
from the air. Preferably the terrain should be free from enenmy
ground units as well.

4.2.3 Translate Expert System to Neural Network Representation

The expert system was translated to a neural network
representation using the automatic translator. Some procedural,
numeric code needed to be approximated by small networks which were
designed and translated separately from the main expert system
network. Additionally, the inputs and outputs to the translated
network were connected to a simple interface for demonstration
purposes. The translation task consisted of a number of steps.

4.2.3.1 Update Prototype Translator
The translator was written in the summer of 1990. It needed

to be updated to 1992 software standards. The intervening two
years produced two major updates of KAPPA. The translator needed




to be ported across these updates. In addition, certain
simplifications in the operation of the translator were developed.

4.2.3.2 Develop Additional Translation Strategies

Two additional types of translation were added to the
translator. Both were particular to this application. One was to
allow the summation of the polygon ratings inside of the network
instead of a virtual processor (see Appendix B for a description of
translation elements and strategies). The other was to use the
ratings to perform route planning within the neural network. An
additional step was to assemble the input vectors for each polygon
separately from running the network for that polygon. This way the
vector could be assembled ahead of time, which is closer to how the
final Phase II system would operate.

4.2.3.3 Implement Additional Translation Strategies

The additional translation strategies were implemented in
either Kappa or C, whichever was most expedient for each. The code
to create the vector assembler was written in Kappa as was the code
to translate the summations. The code to translate the route
planning algorithm was written in C. The neural network
simulations were all in C.

4.2.4 Design and Implement Demonstration Application

A demonstration AAA Planner was designed and implemented.
This included a user interface to allow the Planner to be
demonstrated. The purpose of this step was to show the flavor of
the final Phase II system and prove that the intelligent neural
network was possible.

4.2.5 Design Phase 1I Software Architecture

Based on performance and hardware considerations, the AAA
Planner to be implemented in Phase II was designed. This design is
carefully documented and explained in Section 5.5.

4.2.6 Determine Performance of Final System

The performance of the neural network prototype was evaluated
through a simulation testing phase. The simulation allowed us to
determine what percentage of the time the network performs
correctly and in which situations, and whether decisions can be
reached with the existing neural network hardware and real-time
constraints. From this prototype, performance criteria of the
completed system implemented in neural network hardware can also be
estimated. The number of neurons created and the hardware
available to simulate them was a major factor in the calculation of
the expected performance.




v

4.2.7 Prepare Final Report

This final report documents the work performed in Phase I and
lays the groundwork for Phase II. Specifically, the results of the
evaluation of the prototype and the estimated performance of the
completed Phase II system are detailed.
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5.0 TECHNICAL RESULTS AND PHASE I ACCOMPLISHMENTS
5.1 Summary of Results

The AAA Planner was selected as the TDA problem solution for
implementation and translation. Knowledge sources consisting
primarily of Army documents were identified. Knowledge was
extracted and implemented in IntelliCorp’s Expert System Building
Tool, Kappa. This expert system was completely translated into a
neural network representation using both generic and AAA Planner
specific strategies. Based on this Phase I experience, a Phase II
system was designed and its performance was estimated. The time to
completely plan a route in a 100 mile by 100 mile area was
conservatively estimated to be 3 seconds with a $4000 specialized
board and a 486-based PC.

5.2 TDA Problem Selection and Analysis

Although the AAA Planner was ultimately chosen as the best
TDA, it was not our only possibility. The other possibilities
included supply facilities location, sensor system site allocation,
main battle unit movement corridor identification, integrated air
defense plgnning, integrated defensive fire support planning, Joint
Surveillance and Target Attack Radar System (JSTARS) patrolling
patterns, and smart weapons deployment.

TEC suggested that we choose a battlefield domain for the
expert system implementation. Given this guidance and our own
domain knowledge we eliminated supply facilities 1location and
sensor system site allocation, leaving the five other domains. We
researched various tactical domains and identified possible sources
of knowledge for particular domains and narrowed our choices down
to fire support, defense setup against tanks, and the ground
avenues of approach.

We chose the ground avenues of approach domain and began work
using terrain information gathered during a previous project. We
developed rules which considered slope, elevation, soil type,
weight bearing ability of the soil, tree density, vegetation, and
type of vehicle. The rule base evaluated the traversability of
polygons to certain types of vehicles. We also began formulating
the route planning method used by the ultimate AAA Planner.

We then attended a meeting at TEC to discuss the particular
direction and enhancements of the ground avenues of approach
planner. At that time we discovered much work had already been
done in the ground avenues of approach domain and that a need was
anticipated for a helicopter or airborne avenues of approach
planner. We identified relevant Army documents that covered this
domain through a former Ft. Rucker contractor employee
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5.3 Knowledge Engineering Results
5.3.1 Knowledge Gathering
Helpful Documents

The following documents were very helpful in providing detail
on planning airborne avenues of approach:

TC 1-201 Tactical Flight Procedures (especially chapter 6)
Training Circular NO. 1-201

FM 1-202 Environmental Flight (provided tactical information about
4 different environments, mountain regions section was
especially helpful)
Field Manual NO. 1-202
Headquarters Department of the Army, Washington DC
23 February 1983

Potentia sef elate ocunme

The following documents were referenced by the above documents
and may provide helpful detailed information for future work:

FM 1-402 Threat equipment

AR 21-33 Terrain Analysis (Army Regulations)

FM 1-101 Aircraft Battlefield Counter-measures and Survivability
FM 1-204 Night Flight Techniques and Procedures

Other Documents

The following documents focussed either on general air/land
battle doctrine without the detail necessary for planning purposes
or on the training techniques required for learning to fly a
helicopter.

FC 1-214 AirCrew Training Manual, Attack Helicopter, AH-64
Field Circular NO 1-214
Headquarters Aviation Center, Fort Rucker, AL
31 May 1986

FM 1-113 Assault Helicopter Battalion
Field manual No 1-113
Headquarters, Department of the Army, Washington, DC
28 October 1986

TC 1-212 AirCrew Training Manual, Utility Helicopter, UH-60
Training Circular NO 1-212
Headquarters, Department of the Army, Washington, DC
3 October 1988

FM 1-100 Doctrinal Principles for
Army Aviation In Combat Operations
Field Manual No. 1-100
Headquarters, Department of the Army, Washington, DC
28 February 1989
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FM 1-116 Air Cavalry Troop
Field Manual NO 1-116
Headquarters, Department of the Army, Washington, DC
14 August 1986

FM 90-4 Air Assault Operations
Field Manual NO 90-4
Headquarters, Department of the Army, Washington, DC
16 March 1987

FM 1-112 Attack Helicopter Battalion
Field Manual No 1-112
Headquarters, Department of the Army, Washington, DC
14 July 1986

wle U i h t ste
Definitions:

Terrain flight - low-level, contour and nap of the earth (NOE)
METT-T - Mission, Enemy, Terrain and weather, Troops, Time
available

Low level flight - 50-200 feet above ground level (AGL)

NOE and contour flight altitude - 0-50 feet AGL

Nontactical flight altitude - 500 feet AGL

3 types of desert - mountain, rocky, and sandy (most arid regions
are rocky)

Knowledge:
Threats:

- Keep highest terrain and thickest vegetation between threat and
aircraft, if not possible, keep terrain behind helicopter

- Avoid air defense weapons and ground units

- Use friendly side of terrain features

~ Use terrain which provides cover from visual observation or
electronic detection

- Threats have trouble with rugged, swampy and heavily vegetated
areas

- Use areas inaccessible to wheeled or tracked vehicles

- In gently rolling areas, use low terrain such as streambeds

- In arid and open areas use streambeds or depressions where there
may be trees

Rotor Wash:

- Avoid snow and dust
Shadows:

- Avoid large bodies of water

- Use heavily vegetated rather than open terrain
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Path Planning:

- Plan routes which provide recognizable checkpoints

- Fly in the lowest part of a valley

- Avoid routes which restrict maneuverability and channelize
movement into a small area

- Avoid deep river valleys or gorges

- Do not follow linear, manmade features such as roads or canals

- Avoid built-up areas

- Avoid manmade obstacles such as wires and towers

- Avoid visibility restrictions such as fog, clouds, smoke

- Avoid poor weather areas

- Preselect alternate routes

- Avoid areas originating or targeted for friendly fire

Additi ] wled : : :
Wind:

(see FM 1-202, pp. 4-2 through 4-9, 4-19, 4-33, 4-36)

- Avoid turbulence

- Use updrafts

- Avoid flight near abrupt changes in terrain

- Sun heats the land and creates wind turbulence

- In the desert, avoid sand and dust storms because of damage
caused

Personnel:

- Personnel factors may influence selection of terrain flight
techniques: crew rest, proficiency, mission-oriented protective
posture (MOPP)

- Terrain flight in mountains causes greater stress and fatigue

Multi-helicopter Operations:

- Spacing between helicopters varies depending on environment: 1In
snow, 5-10 seconds separation; In landing zone, 15-30 seconds
separation

- In snow, avoid narrow valleys or crevices with multiple
helicopters

Altitude and Velocity Selection:

- Mission may dictate altitude (eg. M-56 aerial mines must be
dispersed at 100 ft AGL)

- Fly NOE or Contour when within range of enemy’s weapons

- Always fly at highest terrain flight altitude for specific
condition to reduce navigation difficulty and minimize fatigue

- NOE flight over snow leaves a trail

- NOE flight over desert may leave dust signature or shadow

- Weather may prohibit visual flight
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- Cold weather: If nontactical, fly high; fly > 40 knots to
minimize rotor wash

- Mountains: Fly as fast as possible; NOE may be more dangerous
than contour due to turbulence and terrain features

- Use NOE and contour in unfamiliar terrain where enemy detection
is likely

Checkpoint Selection:
- Identify key terrain features to use as checkpoints
Plotting:

- Plot selected landing zones, ambush and/or firing positions,
aircraft control points and known or suspected enemy positions
- fTerrain is evaluated along the route for hazardous conditions

Miscellaneous:

- Use artillery delivered smoke in sparse areas

- Use indirect fires to suppress threat weapons

- Underfly wires

- Do not underfly wires over snow

- Cross over wires at poles or midpoint

- Cross under wires near poles; clearance shrinks with rising
tenmperature

- Snowstorms and wind can change the appearance of an area

- Never turn tail toward enemy

- Avoid obvious avenues of approach into enemy territory

- Watch for wires stretched across narrow canyons

- Dash across open fields at the narrowest point

- Cross ridges at the lowest point

- Cross peaks at the lowest point

- Dash down the forward slope to the nearest concealment after
crossing a ridge line

5.3.2 Knowledge Implementation

The tactical knowledge had to be converted into a form
amenable to implementation as rules or procedures. In particular,
certain concepts had to be defined. For example, in the phrase
"large bodies of water", "large" had to be mathematically defined.
Polygons were defined to have a Length (longest possible dimension)
and an AverageWidth (Area divided by Length). "Large" was defined
to be an AverageWidth greater than 50 meters. In addition, the
concept of favoring or avoiding certain kinds of terrain was
handled by having rules alter a Rating for each polygon. So the
rule to avoid large bodies of water became:

(p|Polygons]
IF
p:CoveredBy = Water And p:Width > 50
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THEN
p:Rating = p:Rating - 4

A complete listing of the rules and methods used to calculate
some of the polygon features is given in Appendix D.

5.4 Translation Results

5.4.1 Translation Strategies

5.4.1.1 Expert System Concepts

One of the primary objectives of the original translator
research was to design strategies for converting a large percentage
of expert system concepts to a neural network representation. The
features common to a large class of expert systems include rules,
frames (objects) and inference mechanisms. These concepts are the
origin of the translation and the input to the <translation
strategies. Additionally, procedural code in the expert system
must be allowed for.

The most general form of a rule is a simple IF-THEN statement.
More complex rules employ any number of connectives, user-defined
functions, and comparison operators. Examples of various types of
rules are given below:

Simple rule oo If A Then C
Connectives: And, Or, Not ceos If A Or B Then C
User-defined functions oo If £(A) Then C
Comparison functions .o If A > B Then C

The other commonly supported knowledge representation is the
object-oriented frame. A frame object consists of slots
representing object attributes, and slot values which can typically
be numeric, textual, or boolean. Objects may be semantically
connected into networks and referenced in the antecedent and
consequent of rules. During reasoning, an expert system examines
and sets slot values. In the following example, the CoveredBy slot
of the object, Polygon, would be examined during inference and the
Rating slot would be modified by the rule.

Object: Polygon

Slots Values
CoveredBy Vegetation
Trafficable TRUE
OwnedBy Enemy
AAWCoverage FALSE
Rating 10
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If Polygon:CoveredBy = Vegetation
Then Polygon:Rating = Polygon:Rating + 2;

The reasoning mechanisms generally supported in an expert
system are forward and backward chaining, with typical search
strategies of depth first, breadth first and best first.

5.4.1.2 Translatable Concepts

After reviewing the expert system representations and
inference strategies described in the previous section, we resolved
to translate slot and rule structures, including complex rules with
connectives and comparison operators and rules containing objects
and slots. After examination of numerous expert system
applications, we established the fact that in a well—des1gned
expert system, the order of evaluation of rules during inference
should have no bearing on the ultimate outcome of the inference.
That is, the choice of forward chaining versus backward chaining,
enhanced with any of the search strateg1es, should not have an
impact on the answer produced by the reasoning process, only on the
efficiency with which the answer is found. Therefore, if rules are
translated and thus effectively parallelized, the result of
activating them simultaneously should continue to produce the same
answer. Inference is therefore translatable. Additionally, by
selecting intelligent ranges of slot values and representing each
range with a neuron, we found that nost slots are also
translatable.

5.4.1.3 Untranslatable Concepts

The portions of an expert system that we cannot translate
include procedural programming code as in user-defined functions
and methods, and the user interface code. These untranslatable
components are called expert system fragments. The objects and
slots that are set as input by the user are not normally
translated. An exception was made for the AAA application so that
they can be translated and hooked to a virtual processor which
assembles the input vector for the neural network from the input
objects and slots set by the user of the AAA Planner.

Although the fragments are not translated into neurons, they
are nevertheless parallelized. As mentioned previously, we devised
the concept of a virtual processor which in effect represents and
executes an untranslated fragment. Virtual processors are
integrated with neurons as the output of translation. Each virtual
processor can then be run on a separate processor, maintaining the
parallel nature of the translated system. The concept of virtual
processors will be further clarified in the following sections when
we demonstrate the techniques for creating virtual processors.
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5.4.1.4 The lLogic Network Representation

In devising strategies for expert system to neural network
translation, we sought to create very general techniques with wide
applicability to a number of expert system and neural network
tools. For this reason, we needed a generic knowledge
representation independent of any particular expert system tool or
neural network simulation. This representation is the 1logic
network.

The logic network is a complete symbolic, object-oriented,
parallel representation of the rules and objects present in the
expert system. From the logic network, a neural network can be
constructed. The logic network is independent of a particular
neural network paradigm.

The elements of the logic network correspond to elements of
the rules. There are three major types of logic network elements:
gates, predicates and virtual processors. The gates represent And,
Or, Not, the Unknown function, and the Then indicator in a rule
consequent. Predicates represent particular slot values or ranges
of slot values for a particular slot for a particular object.
Virtual processors represent the untranslatable fragments of a
rule, including user-defined functions, user-interface procedures
and the objects and slots used in the user-interface.

Gates and predicates input and output logical values of true,
false and unknown. Each gate accepts inputs, computes the
appropriate logical operation on the inputs, and produces an
output. A predicate simply passes its input value through as
output. Predicates may be used for input, output or intermediate
functions in the logic network.

Virtual processors represent the untranslatable components of
an expert system. Because we chose to translate as much of the
logic of an expert system as possible to neural form, we decided to
make virtual processors as simple (and unintelligent) as possible.
A virtual processor cannot decide on its own under what conditions
to execute its code fragment. Instead, it examines an associated
predicate, called a trigger predicate. When the trigger is turned
on, the virtual processor executes. To prevent the virtual
processor from wastefully executing over and over, we added extra
logic to turn the trigger predicate off. Extra logic was also
required to prevent unnecessary evaluation of conjuncts and
disjuncts in an antecedent. Consider for example, the antecedent

If A And B And C
If conjunct A is examined and found to be false, there is no need

to evaluate conjuncts B and C. Expert systems typically employ
this efficiency measure. Since we wanted our translated expert
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system to perform identically, we accommodated this in the logic
network.

Each rule in the expert system knowledge base is mapped into
a logic network form. This form contains a Then gate whose input
is connected to the output of the logic network representation of
the antecedent and whose output is connected to the input of the
logic network of the consequent. The logic network initially
associated with a rule is considered a template. For each variable
the rule ranges over, the template must be instantiated. Thus,
every potential instantiation of a rule is a separate logic
network. The details of the expert system to 1logic network
translations and the method of simulating the logic network are
given in Appendix B.

5.4.1.5 The Neural Network Representation

Because the logic network is a parallel representation,
conversion to neural form is straightforward. Each element of the
logic network has a corresponding neural configuration. For the
current implementation of the translator, neurons are real-valued,
employing the logistic function. Translation to neural form is
accomplished by iterating through the set of 1logic networks,
converting each logic network element to its neural configuration
and establishing the positive and negative connections between the
neurons. Virtual processors are tightly integrated with the
resulting neural network. However, execution of the virtual
processor is triggered by a positive output from a neuron rather
than a predicate.

As an example of the translation from a logic network element
to neural form, each AndGate in a logic network becomes a set of
four neurons organized identically with the same weights. As a
unit, the four neurons with their biases and connection weights,
implement the logic of an AndGate with two inputs and one output.
Further details of the neural configurations are given in Appendix
B.

5.4.1.6 Additional Strategies

There were three additional translation strategies implemented
for the AAA Planner application. These strategies translated
Rating Summation, Input Vector Assembly, and Route Planning to a
neural network form.
5.4.1.6.1 Rating Summation

The first step in the implementation is to identify virtual

processors that sum a polygon’s rating. These are always
associated with a rule consequent. Next, the code identifies the
value which is added to (or subtracted from) the Rating. The

translator creates a connection from the trigger neuron which
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normally would cause the summing virtual processor to execute.
That connection is weighted with the value that would be added to
the rating and attached to a summing neuron for each polygon.

5.4.1.6.2 Input Vector Assembler

The translator first identifies virtual processors which
convert frame information to a neural input vector representation.
The virtual processors are all placed in a list which the vector
assembler can use, prior to running the neural network. This way
the vector could be assembled ahead of time, which is more
efficient.

5.4.1.6.3 Route Planning

The overall goal of the route planning translation is to plan
a route through a series of polygons using a neural network. This
network finds a minimum cost route to all polygons from a starting
polygon. The input to the translation process is a 1list of
polygons. With each Polygon is a list of the adjacent ones. The
output is a neural network which calculates a minimum cost route.
The inputs to the created neural network are the cost to traverse
the polygon and the polygon in which to start the route. The
output is the minimum cost route to all volygons from the starting
one.

Translation is a two-step process. The first step is to
convert the network of polygons (each polygon is ‘attached’ to its
neighbors) to a network of gates. Each polygon maps to a certain
set of gates based on the number of neighbors it has. A gate has
multiple inputs and one output which computes some simple function
of the inputs. The second step is to convert the gate network to
a network of neurons. Each gate maps to a set of neurons which
perform its function. More detail is given in Appendix B.

5.4.2 Architecture of the Translator

The translation process is separated into several well-defined
components to simplify the activities and representations required
in each process. This also permits greater flexibility to swap
different versions of components in and out. The overall
architecture of the prototype translation system is shown below.

The Translator is made up of both generic and application
specific components. The generic component, the Generic
Translator, converts any Kappa Knowledge base into a system of
virtual processors and a neural network. The Generic Translator
processes rule structures and produces a set of corresponding logic
network templates. These templates are then instantiated, creating
the logic networks and the expert system environment required to
run the virtual processors. The Logic Net Translator converts the
logic networks into a generic neural network representation. This
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process is described in more detail in Appendix B. This system can
be run as is or further translated with the AAA Planner Specialized
Translator. The Specialized Translator converts all of the virtual
processors into neural network components, thereby creating a
neural network only application. To accomplish this, it creates an
Input Vector Assembler which assembles input vectors for the neural
network from the polygon information.

<E;PPA KQ) AAA Planner
Specialized

(Girtual Translator
Processors
Generic 7N
Translator Noural dd\
Network Add-On Input Vectof)
Neural Assembler

Network

N

Output Network Simulator {(Input Vectqi)
Vector

Figure 5-1. Translator Architecture

The developer interaction with the translator consists of
starting the various processes. In the current translator, the
developer interface consists of KAPPA-provided functionality to
alter slot values and start methods and functions. The important
functions are Reset(), Translate(), RunSystem(),
AddToNetwork(file), AssembleInputVectors(), and
RunCombinedNetworks. Reset() clears out old translation objects.
It should be called before Translate() to ensure a clean
environment. Translate() is the generic translator. It translates
test.rul (a KAPPA rulebase), test.ins (a KAPPA instances file), and
test.cla (a KAPPA class file) into a neural network and associated
virtual processors. RunSysten() runs the system of virtual
processors and neural network created by Translate().
AddToNetwork(file) makes a new add-on network which sums polygon
ratings and adds input Virtual Processors to a list used by
AssembleInputVectors(). AssembleInputVectors() assembles neural
network input vectors for polygons in file, vecti, where i varies
from 1 to the number of polygons. RunCombinedNetworks() runs the
polygon evaluation network on each input vector then runs the route

planner neural network.
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5.4.3 Translator Updating Results

The original translator was a combination of Kappa 1.1 and C
code. The C code was linked into the Kappa executable at compile
time. To bring the translator up to Kappa 1.3, the executable had
to be remade. This occurred without difficulty. Some behavior
differences were present in the interpretation of some Kappa
statements. These led to errors which were tracked down and re-
coded to avoid the error.

5.4.4 Translator Performance Results

The performance of the translator is impressive. One hundred
percent of the rules and inferencing was translatable from the rule
base and expert system building tool. Numeric, symbolic, boolean,
and object reference slots are all translated. Using the simple
slot translation strategies previously implemented, 60% to 75% of
all slots in a typical expert system are translated and therefore
eliminated. 1In the AAA Planner, the remaining untranslated slots
(except for those that served as input to or output from the expert
system) were translated using the additional translation techniques
described above.

The AAA Planner had 34 rules and 19 slots. The translated
system had no rules and no slots except to store input from or
output to the user. This total translation was made possible by
developing translations of the Rating summing and route planning.

It appears that most, if not all, knowledge bases are
translatable. Of the six knowledge bases we have examined and
translated so far, all would be translated to the above mentioned
standards. The knowledge bases included three examined before the
strategies were developed and three after. The great majority of
slots were used exclusively in comparison or assignments involving
explicit values. Very few functions or other procedural code was
used.

A broad class of problems can be translated using our
strategies. For example, recursive rules will translate correctly.
Slot types of numeric, symbolic, boolean, and object reference are
all translatable. The best increases in speed as a result of
parallelization come about when an expert system uses a large
number of rules and/or objects, as in the large number of polygons
in the AAA Planner. The major prerequisites for translation are
that rule ordering is unimportant and that little procedural code
(function calls, methods, user interface, etc.) is used. While
such systems can be translated and function correctly, not all of
the translated system is neurons; virtual processors would also be
required. To completely eliminate the virtual processors requires
that few function calls are used and that those be mainly numeric
calculations for which a neural approximation is acceptable (as in
graph navigation algorithms or summing polygon factors).
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There are two options when translating an expert system. One
is to have the target network represent a single copy of the rules.
This network must then be applied to each object the rules range
over. The other is to create a copy for each of the rule set
neurons for each object, so the data for each object is examined in
parallel. Which choice is exercised depends on the number of
objects, the number of neurons created, and the target hardware.
For example, with the AAA Planner on a serial processor, we chose
the first alternative.

The number of neurons created by the translation per object is
given by the following formula, number of neurons per object = K #*
number of rules, where K is a constant which depends upon rule
complexity. K is generally a number between 10 and 25. For the
AAA Planner, 31 rules became 666 neurons per object leading to a
value for K of about 21, which corresponds to the fact that the
rules were relatively complex. Optimizations performed on the
network could reduce the number of neurons at least by half.

The translator produces sparsely connected networks. 1In fact
the number of connections is linear with the number of neurons
instead of proportional to the square of the number of neurons.
The AAA Planner translated into 666 neurons and 1447 weights and
biases.

The success of the expert system to neural network translation
offers great potential benefits to both the military and private
sector. The importance of expert systems as independent
intelligent entities has already been recognized. The translation
and deployment of an expert system in neural network form and on a
parallel processor will allow adaptable, fault tolerant behavior
during unforeseen events and inputs, and permit high speed
performance.

5.5 Phase II Software Architecture

The Phase II Software Architecture was designed to optimize
real-time performance. This was accomplished by maximizing the
amount of computation that could be performed ahead of time. 1In
the architecture shown below, processes above the dotted line are
performed ahead of time, off-line, and the processes below the
dotted line occur in real-time, on-board.

Elevation grid data 1is processed through a Landform
ldentification Module, producing terrain polygons which correspond
to hills, valleys, and other terrain features. This information
must be combined with overlay data such as vegetation and soil
types, to produce the set of polygons and associated information
used by the AAA Planning Expert System. These are put through the
translator to produce a neural network and input vector, which
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represents the polygon information. On-board the helicopter, the
neural network processes the input vector and produces a
recomnended path in a matter of seconds. During flight, update
information can be written into the input vector and the route can
be replanned, again, in a matter of seconds.

(Flevation
Grid

Landform
Identification

Expert
Terrain System
Polygons Polygon :Translator
Combiner Polygons
Overlay
Polygons Off-Line
Real:fzﬁé """"""""""""""""""""""""""""""""""""
(@utput Vector Sizigik Input Vectda
Updated Starting
Polygon Polygon

Information

Figure 5-2, Phase II Software Architecture

This system is able to achieve performance impossible even
with super-computer power by taking advantage of two facts. One is
that the landform polygons do not change even if information about
them does. This permits extensive preprocessing. The second is
that inexpensive, specialized neural network processors exist which
outperform super-computers by two to three orders of magnitude.

Onboard the helicopter, the user of the AAA Planner would add
updated information on any polygon by editing its information,
perhaps through a touch sensitive screen. The system could also
automatically keep track of which polygon the helicopter is
currently in through the use of Global Positioning System (GPS)
data. This information would be translated and written into the
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input vector. The network would process this vector, in effect
planning optimum routes to every polygon from the current location.
By specifying the desired destination, the optimal route could be
displayed. An updated optimal route could be calculated and
displayed every ten seconds or less, depending on the chosen
hardware configuration as calculated in the next section.

5.6 Phase II Predicted Performance

The smallest terrain features of interest in the AAA problem
have linear dimensions of roughly 1/2 mile or 1/4 square miles of
area. This is roughly equivalent to 640,000 square meters or 64
grid points in a 100-meter grid. The following discussions follow
rough, order-of-magnitude calculations.

A rule-base of the required complexity for polygon evaluation
would translate into approximately 1000 neurons or less. At most
each neuron would average three connections, so at most 3000
connections would need to be processed per polygon. A 100 mile by
100 mile square of interest should contain at most 40,000 polygons.
Therefore, at most 120 million connections would need to be
processed to evaluate each polygon. Route planning requires 15
neurons per polygon. Therefore, at most 1.8 million connections
(40,000 polygons X 15 neurons per polygon x 3 connections per
neuron) would need to be processed for the route planning portion
of the network.

There are several neural network processing options with a
range of costs and performances. One option is to use the PC
compatible Loral P-board, built around Digital Signal Processing
technology. One P-board costing about $4000 today can process 41.3
million connections per second. The time to perform the required
processing is then 3.0 seconds. One benefit of the P-board is that
it is a general purpose floating point accelerator board which
could be used for other purposes. Another benefit is that all
hardware required is already commercially available, and dropping
in price. Last July (1991) a single P-board was $9000. If further
processing power was required, an additional P-board could be
purchased and used effectively.

On the other side of the price and performance scale is the
CNAPS Server by Adaptive solutions, compatible with UNIX Ethernet
systems. At 655,000 it provides processing of 5 billion
connections per second for a processing time of 0.024 seconds. The
CNAPS is also a general purpose accelerator which could perform
other tasks, although it only uses integer arithmetic.

Intel has developed an analog neural network processing chip
called the 80170NX which can process 2 billion connections per
second. The chip processes the connections for 64 neurons every 3
microseconds. To simultaneously represent the 1000 neurons could
take as many as 20 chips. Each polygon could be processed every 3
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micro seconds for a time of 0.12 seconds. The 600,000 neurons
associated with the path planning portion of the network would
require at most 0.06 seconds for a total time of 0.18 seconds. At
$540 per chip, the cost for the chips would be $10,800. In
addition, some simple A/D and D/A conversion boards would have to
be developed using existing chips, or purchased outright.

Another alternative is to use a single 80170NX chip and
perform the calculations of each of the 20 chips in the above
option, in turn. The software driving the hardware would be more
complex, the memory requirements would be greater, and the
specialized hardware would have to be faster. But the total cost
of the hardware would be less. To process the polygons would take
20 times as long, 2.4 seconds for all of them. The time to process
the route planning neurons would still be 0.06 seconds as before,
leading to a total time of 2.5 seconds.

The advantages of using either 80170NX approach is that the
chip has spare processing power that we are not using. The
processing time is independent of the number of connections per
neuron if that number remains small. For example, if instead of
three connections per neuron, we used 30 connections, the
processing time with the same hardware would be nearly identical.
This situation might develop if we introduced neural network
training which increased the strength of previously zero-valued
connections.

The translation algorithms can be easily changed to use
different types of neurons. This allows us to delay the choice of
hardware until late in the projects, if desired. Actually, all of
the hardware options described above use real-valued, sigmoid
function neurons, so no alteration of the translation would be
necessary. Translation changes would only be required to take
advantage of some as-yet-unknown option. If the final hardware
choice required specialized hardware development, more time would
be required.
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6.0 TECHNICAL FEASIBILITY

Assuming that terrain polygons are available, the use of an
intelligent neural network to process them has been shown to be
feasible in Phase 1I. To determine the practicality requires
looking at costs. Since it is impossible to guess the costs of
hardware two years from now when the system is fielded, we will use
today’s hardware costs. It should be kept in mind that hardware
costs are still dropping rapidly.

The Loral P-board option requires the $4000 P-board and
approximately $2000 for a portable 486 machine. The total per
system hardware cost is then $6000.

The 20 80170NX chip option requires $10,800 for the chips.
The entire hardware requirements, including the portable 486
machine, could be produced for roughly $15,000.

The single 80170NX chip option requires a single $540 80170NX.
The entire hardware requirements, including the portable 486
machine and chip interface hardware, could be produced for roughly
$6000.

One requirement for the final Phase II system which was not
tested in Phase I was the conversion of the elevation grid data
into terrain polygons. This was to avoid duplication of effort.
We would use techniques developed in the other effort for our Phase
II project, or develop our own techniques. One task which could be
performed by a neural network is to group areas by curvature.
Areas of positive curvature form valleys and ravines, while areas
of negative curvature form hills and ridges. Curvature can be
easily calculated at each grid point based on the data of the
surrounding points. Smoothing with surrounding curvature values
could be employed to prevent small bumps and depressions from
becoming their own polygons. If these calculations are performed
by a neural network, edge detection is simplified for the polygons
by having a neural layer identify points with areas of opposite
curvature on either side.
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7.0 FUTURE RESEARCH AND DEVELOPMENT

There is an enormous amount of both research and development
that remains to be performed. Phase I has laid a firm foundation
by proving that the translation of the AAA Planner from an expert
system to a neural network is possible. The AAA Planner and its
associated neural network must be further developed to take
advantage of this opportunity. Research should be performed to
allow even greater advantage of that translation.

7.1 Future Development

Future development includes work on the AAA TDA and
improvements to the translator.

7.1.1 Helicopter Avenues of Approach TDA Development

In Phase II, the complete AAA Planner using neural network
hardware will be implemented, tested, installed and field-tested
on-board a helicopter. A major part of this development will be on
the originating expert system. Domain experts must be identified,
interviewed and knowledge engineered. These experts will likely
consist of personnel from Fort Rucker, Alabama. Most importantly,
examples of helicopter path planning must be acquired. If
possible, watching the process in an actual tactical setting would
be ideal. The Phase I prototype was based on simplified knowledge.
The Phase II system must be based on a much more accurate and
comprehensive representation of the AAA planning knowledge.

The Phase I prototype assumed that terrain polygons had
already been identified. An automatic way of converting the
elevation grid data into terrain polygons must be developed. This
may be provided by another SBIR project or may be developed as part
of the Phase 1II effort. One approach, based on curvature, is
described in Appendix A.

The Phase I prototype’s interface was the minimal required to
demonstrate the application. The final system’s user interface
must meet the rigid requirements of a high-pressure, tactical
environment. Where the Phase II interface development was a
negligible fraction of the development effort, the Phase 1II
interface work will be a considerable portion of the project.
Touch-sensitive screens should be investigated as one possible
input/output device, especially for specifying current position or
desired target area. The interface will go through several
iterations in simulated cockpits with helicopter crews to ensure
that it enhances, not detracts from, their abilities.

The Phase I effort could not include specialized neural
network hardware. Several options have already been identified.
These and others will be investigated in Phase II. Because of
their low cost and the flexibility of the translator, several
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different neural network processors may be acquired and evaluated
in detail. The translator is an inherent component of the Phase II
effort. Therefore, development will proceed on it in parallel with
the AAA Planner, as described in the next section. The Phase II
design is described in Appendix A.

7.1.2 Improvements to the Translator

To improve the network resulting from translation of the AAA
Planner expert system, the translator itself must be improved so
that it is sophisticated, practical, and tunable. Currently, the
translation process emphasizes the correctness and parallelization
of the final network. The neural network behaves exactly as the
expert system does. This was necessary for a convincing proof of
the feasibility of translating an expert system. To seize upon the
Phase I research, the user should also be able tOo maximize
adaptability, generalization, and fault-tolerance of the final
neural network. Certainly the size or speed of the network on
various platforms could also be optimized.

Both binary and real valued neurons with various output
functions and various topology types must be allowable targets.
Fuzzy Logic Networks must be supported. If a conversion to
Conjunctive Normal Form (CNF) proves useful it should be
implemented. This would allow a more neural-like network tcpology.
A better set of slot conversion strategies should be implemented.
Lists can be implemented with a set of neurons corresponding to the
possible members of the list. Assignments to one slot from another
slot could be handled with a more intelligent analysis.
Comparisons between two slots in the antecedent should be supported
instead of just between a slot and an explicit value. Certain
functions and methods could be translated into a network framework,
including certain classes of user-defined functions and methods.
A more generic representation for numbers could be implemented
involving a binary representation or by making use of input
neurons.

Optimizations on the network can be performed which eliminate
neurons and thereby reduce the number of layers. Multivariable
rule translation was designed but needs to be implemented. The
translation must occur rapidly and should be implemented in a
highly portable language such as C.

Functions normally associated with Knowledge Base Management
Systems can be performed on the rule-base. These 1include
optimizations such as the removal of redundant rules, combining
related rules, and checking for correctness, consistency or order
independence. Optimizations can also be added in the logic network
to neural network translation process. Certain logic network
elements commonly appear together and these can be Dbetter
translated as a group, instead of individually.
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7.2 Future Research

Further research into adaptability, fault tolerance,
generalization and other optimizations will benefit the AAA
planner. These research ideas are discussed in the following
sections.

7.2.1 Adaptability

Research must be performed to determine the best way to make
the neural network easily adaptable. Two options should be
investigated. The simplest option is to associate another neural
network with the translated neural network. This neural network
shares the translated network’s input and output neurons, initially
adding effectively nothing to the output. The translated network’s
weights are static. All training is performed with the associated
network’s weights. The advantage to this approach is that it is
straightforward and flexible, easily allowing multiple network
paradigms. The disadvantage is that extra neurons are required and
the number of extra neurons and their topology must somehow be
decided upon.

The second option is to change the translation process so that
the resulting network is more adaptable. Currently, the structure
of the network mir.o.s the structure of the rule base. The weights
are set very hi;I co guarantee logical behavior. For adaptable
network behavior, the weights need to be relaxed considerably. The
degree to which they should be relaxed depends on many factors and
should be somewhat under a user’s control. For example, the
weights could be relaxed a minimal amount so that correct behavior
is always guaranteed. They could be relaxed so that sometimes
values are produced outside of allowable ranges. In the extreme
case, they could be relaxed until values produced fall in incorrect
ranges, thus producing predictable errors.

An alternative approach for adaptation is to alter the
topology of the network. One strategy is to convert the logic
network into Conjunctive Normal Form (CNF). This coild then be
converted into a neural network with a relatively small number of
layers. Such a network would likely be more amenable to adaptation
than the networks which are currently produced.

7.2.2 Fault Tolerance

Research also needs to be performed to allow greater fault
tolerance of the produced network. Currently, a broken connection
in the network corresponds to altering a particular expert system
rule for a particular object. Alteration of a rule is certainly
better than failure of the entire expert system when a wire in its
processor breaks. However, this is not as fault tolerant as many
neural networks. Fault tolerance can be achieved in three ways.
The first way would be, in hardware, to triple each connection and
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divide each weight by three. This would mean that the loss of any
one connection would have no effect, but the loss of a single
neuron would still cause erroneous, but not disastrous, results.
If this process is taken a step further, each neuron could be
tripled; this requires nine times the number of connections but no
single loss would cause incorrect behavior. The disadvantage is,
of course, the extra neurons and connections required. Although
further research is required to determine a more exact number of
extra neurons and connections for more fault tolerant behavior,
tripling the current number would seem to be the minimal amount
necessary.

As with adaptation, another solution exists to the problem of
increasing fault tolerance - change the structure of the network
produced by the translation. This might entail converting the
logic network to CNF and then completely connecting adjacent
layers. Research would be required to determine proper weights on
the added connections. One solution is to use training to set
those weights.

7.2.3 Generalization

The generalization capabilities of our translated networks
have not been investigated. Currently, the network accepts inputs
within 0.1 of 0, 1, and 0.5, corresponding to true, false, and
unknown, and produces outputs in these same allowed ranges.
Intermediate values would tend to be interpreted as falling in the
closest allowed range, which may or may not be the best
interpretation. Research should be performed to take advantage of
values outside the allowed ranges. Investigating Fuzzy Logic (FL)
would be appropriate, since currently the network implements FL for
Ors, Ands, and Nots in the expert system for neural values near 0,
0.5, and 1. Additionally, FL systems are becoming common in many
actual hardware controllers.

7.2.4 Neural Structuring

The above three topics (adaptability, fault tolerance, and
generalization) can all be considered part of a more general topic,
which is how to make the translated network behave more like a
neural network and less like an expert system. This would also aid
the process of designing a neural network for some task by writing
an expert system and translating.

As mentioned previously, one way to make the network more
neurally structured is to convert the logic network to CNF, then
translate this logic network into a small number of layers. Many
connections would need to be added to fully connect adjacent layers
since the translation process creates many 0 weights. The weights
of these added connections could be calculated or perhaps set with
training.
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In performing the research, two opposing concepts must be
balanced. We must allow for specific neural paradigms for current
translation, while staying general to easily take advantage of
future discoveries of new paradignms.

7.2.5 Optimizations

There are optimizations associated with each of the three
primary software modules in the translator. Type 1 optimizations
are performed on logic network templates during the rules to logic
network templates translation. Type 2 optimizations occur during
template instantiation on the instantiated logic networks. Type 3
optimizations are performed on the neural networks during the logic

network to neural network translation process. The various
optimization strategies are outlined below.
T Sptimizati

Type 1 optimizations actually may occur on the generic rules,
during the translation from rules to logic network process, or on
the resulting logic network. Optimizations can be performed based
on the type of inference desired in the final system. For example,
there may be different answers to the following questions: 1Is it
important to fire all true rules or only true rules whose
antecedent contains slot names on an agenda? Must virtual
processors only execute once and in the order dictated by the logic
or can they also execute at once?

There are various optimizations normally associated with
Knowledge Base Management Systems (KBMSs). These include combining
and eliminating rules. Certain gates often appear together. These
could be combined into new types of gates which would improve the
final neural representation. Rules or the logic network could be
translated into Conjunctive Normal Form (CNF) since all logical
systems have an equivalent CNF representation. This transformation
combined with new types of gates could lead to a network with very
few layers.

: ptimizati

Type 2 optimizations are performed during the logic network
instantiation process and on the instantiated logic networks. The
optimizations are the same as Type 1 but are only possible after
the logic network has been instantiated. This would primarily
include rules whose antecedent (or consequent) ranges over a
different set of objects than the consequent (or antecedent).

otimizati

Type 3 optimizations occur during logic network to neural
network translation and on the resulting generic neural network.
These optimizations include eliminating neurons to reduce the
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number of layers; adding neurons to increase the fault tolerance
and robustness of the network; changing network structure or
weights for increased adaptability, generalization, speed, or
logical correctness; and increasing the Fuzzy Logic properties of
the network.

In performing the optimizations there are many considerations.
One is that the above mentioned goals are often contradictory. The
type of neurons must be considered. The target neural paradigm is
important and several must be supported. Finally, whether a 2- or
3-valued logic is being used has a dramatic effect. Whereas most
gates require 4 neurons with a 3-valued logic, only one would be
required for a 2-valued one.
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8.0 CONCLUSIONS

The Phase I results absolutely demonstrated the feasibility of
developing a prototype intelligent Tactical Decision Aids (TDA)
neural network system through the use of an expert system to neural
network translator. We implemented the prototype solution with
expert system technology. We then completely translated that
system to a neural network representation using our automatic
translator. The network’s performance was evaluated using test
cases and a neural network simulator. Additionally, the
performance of the completed Phase II system was estimated. The
time to completely plan a route in a 100 mile by 100 mile area was
conservatively estimated to be 3 seconds with a $4000 specialized
board and a 486-based PC. These results clear the way for
development of a complete system in Phase II.

There is an enormous amount of both research and development
that remains to be performed. Phase I has laid a firm foundation
by proving that the translation of the AAA Planner from an expert
system to a neural network is possible. The AAA Planner and its
associated neural network must be further developed to take
advantage of this opportunity. Research should be performed to
allow even greater advantage of that translation.

There are many potential applications of this research. The
most direct application will be for Airborne Avenues of Approach
Planning. This technology could be applied to many route planning
problems including Avenues of Approach for ground units. The
techniques used here would benefit any application involving the
intelligent evaluation of a large number of items. Examples
include threat evaluation and image understanding. Finally, the
generic translator can be used to allow almost any expert systenm to
be translated to a neural network and thus receive the combined
benefits of each technology.
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APPENDIX A PHASE II DESIGN

The Phase II Software was designed to optimize real-time
performance. This was accomplished by maximizing the amount of
computation that could be performed ahead of time. In the
architecture shown below, processes above the dotted 1line are
performed ahead of time, off-line, and the processes below the
dotted line occur in real-time, onboard.

Elevation
Grid

Landform
Identification Expert
: System
Translator
Po ons
yd Polygon Polyvgons
Combiner s

Overlay A .
Polygons Off-Line |

""""""""""" Real-Time

Neural
Ciﬁput Vectofk——INotw rk%%lnput V?ftoﬁ

‘Updated v (Starting
Polygon LPolygon

Information

Figure A-1, Phase II Software Architecture

Elevation grid data 1is processed through a Landform
Identification Module, producing terrain polygons which correspond
to hills, valleys, and other terrain features.

The input to the 1landform identification 1layer 1is the
gridpoint elevations. Each gridpoint corresponds to one input
neuron. The first layer, curvature calculations, contains a neuron
for each grid point. It receives the elevation of the gridpoint it
corresponds to, and its neighboring gridpoints, and calculates an
average curvature.

A Smoothing Layer neuron receives, from the previous layer,
the calculated curvature from one or a small group of neurons. It
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also receives input from other neurons in the Smoothing layer. It
sums these inputs, and outputs the average to its neighbors. 1In
this way large areas of same signed curvature develop a momentum of
activation signals which tend to swamp small areas of opposite
curvature. Two large areas of different curvature cancel each
other at their border, accentuating that border.

Poyrgon Edges

Edge Detection Layer

Smoothing Layer

Curvature Calculations Lavyer

Grid Elevations

Figure A-2, Landform Identification Neural Network Layers

The smoothed curvature calculations are output to the Edge
Detection Layer. A single Edge Detection Neuron receives the
smoothed curvature results from a small group of adjacent neurons.
Edge Detection neurons are activated when their inputs are
different in sign so that neurons corresponding to a border between
different areas of curvature are activated. These detected edges

are output to form the terrain polygons.

The terrain polygons must be combined with overlay data such
as vegetation, soil types, etc. to produce the set of polygons and
associated information used by the AAA Planning Expert Systemn.
This combination is best performed by a GIS as shown in Figure A-3.

During the Phase I1I effort, SHAI will develop the AAA Planning
Expert System as shown in Figure A-4. This knowledge base will be
alterable by Army personnel, if required. This knowledge base will
be translated initially into a template Neural Network. This
template can be instantiated for each polygon or run on each

polygon separately.

The altered terrain polygons and the neural network template
are put through a second translator to produce a neural network and
input vector, which represents the polygon information, as shown in
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Figure A-4, AAA Planning Expert System Development
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Figure A-S. Expert System to Neural Network Translatjion
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The polygon neural network will be a faithful representation
of the evaluation neural network, perhaps altered with training, if
that is considered beneficial. The route planning neural network
is developed from a routing algorithm and the polygon structure.
The Phase I routing neural network ignored distances and fuel
consumption when navigating polygons. The Phase II system will
take these into account. The cost of traversing a polygon can be
dependent on the direction and distance of that particular
traversal. The Routing neural network will calculate the least
cost route to every polygon from the current polygon.

The helicopter crew would access the AAA Planner through a
user-friendly interface. Figure A-6 shows the configuration. On-
board the helicopter, the user of the AAA Planner would add updated
information on any polygon by editing its information, perhaps
through a touch sensitive screen. The desired polygon is selected
by touching it. The attribute of the polygon could also be
selected for updating by touch. 1In the case of a small number of
possible values for the selected attribute, the value itself could
be touch-selected from a menu. Otherwise, the value would be keyed
in. Updated information may also be available directly from the
helicopter’s avionics. For example, the system could automatically
keep track of which polygon the helicopter is currently in through
the use of GPS data.

T S

(] ™ .
Airmen u o |User

c 8 Interface

h e

N [aAA Planner]
1 I

Neural 486 PC H—{Helicopter Avionics]
Network
Processor

4 0

Figure A-6. AAA Planner Configuration

The updated information for polygons would be translated and
written into the input vector. The neural network would process
this vector, in effect planning optimal routes to every polygon
from the current location. By specifying the desired destination,
again by touch-selection, the optimal route could be displayed. An
updated optimal route could be calculated and displayed every ten
seconds or less, depending on the chosen hardware configuration.
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The system is able to achieve this unprecedented 1level of
performance by taking advantage of two facts. One is that the
landform polygons do not change even if information about thenm
does. A given polygon will always be the same shape, be in the
same location, and have the same neighbors. This permits
extensive, off-line preprocessing. The second is that inexpensive,
specialized neural network processors exist which outperform even
supercomputers by more than two orders of magnitude.
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APPENDIX B COMPLETE TRANSLATION STRATEGIES

B.1 Rule to Logic Network Translation

B.1.1 Logic Network Description

Logic Networks consist of gates, predicates and virtual
processors. Gates and predicates input and output logical values
of false, true, and unknown (F, T, and U).

Gates take inputs from other gates or predicates. Each gate
has one output connected to one or more gates or predicates. The
types of gates are ThenGate, UnknownGate, AndGate, OrGate,
PredicateAssignmentGate, and NotGate. The functions of the gates
are described in the following truth tables in Figure B-1.

ThenGate (1 input) UnknownGate (1 input)
Input Output Input Output
T T T F
U U U T
F U F F
AndGate (2 inputs) OrGate (2 inputs)
Second Input Second Input
T U F T U F
Outputs Outputs
FI T T U F FI T T T T
in in
rp U U U F rp U T U U
s u s u
tt F F F F tt F T U F
PredicateAssignmentGate NotGate (1 input)
(any # of + or - inputs)
Negative Input Input Output
T U F T F
Outputs U U
PI1I T UD T T F T
on
sp U F 4] U
iu
tt F F U U
i
v UD = Undecided
e
Figure B-1. Gate Truth Tables
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The PredicateAssignmentGate actually has a number of inputs
divided into two sets -~ positive and negative inputs. If any
positive inp'* is true then the gate outputs true, if any negative
input is true, the gate outputs a false. If both a positive and
negative input are "on", then the output is undefined. The
translation is such that this never occurs.

Predicates come in three classes. An input predicate’s value
is set by a virtual processor. Trigger predicates and hidden
predicates behave identically to each other. The output of a
predicate of either type is the same as its input. The value of a
trigger predicate is monitored by a virtual processor. When that
predicate’s value is True, the virtual processor monitoring it
executes.

Virtual Processors can read and set predicates’ output. They
consist of procedural statements and user defined methods and
functions. Execution begins when an associated (trigger) predicate
is true. The final statements set input predicates.

The logic network can be simulated in the following way:

- Initialize all predicates to unknown.
- Loop through the following actiohs until no virtual
processors execute.

- Simulate the network consisting of the
interconnected predicates and gates starting with
the input predicates and working upward toward the
trigger predicates.

- For each trigger predicate which is true, execute
the associated virtual processor.

The graphical logic network representations of typical rules
are given in the following figures. Predicates are represented by
circles, gates are labeled rectangles, and virtual processors are
elongated hexagons. Actual inputs to gates are indicated by solid
lines, virtual connections are indicated by dashed lines.

Simple Antecedent

The logic network representation of a simple antecedent of a
rule is given below. This representation corresponds to an
antecedent which contains untranslatable items such as function
calls or input/output slots. A typical example is the antecedent,
If Ravine?(p:Depth,p:Width).

The primary element of this logic network is the virtual
processor. The virtual processor is virtually connected to three
predicates, the trigger predicate (left), the value predicate
(above) and the continue predicate (below). All predicate values
are initially set to unknown. The value of the trigger predicate
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depends upon the output of the AndGate, whose value is dependent
upon an implicit input of true and the output of the UnknownGate.
The value of the UnknownGate is obtained from the continue
predicate. If the virtual processor has not executed, the continue
predicate will have a value of unknown. This, when input to the
UnknownGate, produces true. This value and the implicit true value
are input to the AndGate to produce a true value, which becomes the
value of the trigger predicate. The virtual processor examines its
trigger predicate to determine if it should execute. If execution
is triggered, the virtual processor sets its value predicate to the
result of the execution, and its continue predicate to true. The
continue predicate indicates that the virtual processor has
completed execution. The next time through the simulation, the
trigger predicate will be false, thus preventing multiple
executions of the virtual processor.

O <
= O

Figure B-2. Simple Antecedent Logic Network

Simple Consequent

The simple consequent 1is very similar to the simple
antecedent, with two exceptions. It contains a ThenGate, whose
input would come from the value predicate of the simple antecedent.
It also does not have a value predicate.

B F e OO
o} O

Figure B-3, Simple Consequent Logic Network
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Complex And Antecedent

Pictured below is the logic network corresponding to an
antecedent containing an And connective. It is similar to the
structure for the simple antecedent, except that it has an
additional AndGate. The circle labeled "Left Side", could be
replaced with the logic network structure for a simple antecedent,
or any of the complex antecedents. This structure, for example,
could correspond to the antecedent,

If Ravine? (p:Depth,p:Width) And Long(p:Length,p:Width)
The virtual processor in the drawing below would represent the
right side of the And, Long(P:Length,p:Width).

|

And

- 7 B S G

Side '

Unknown? {j)

Figure B-4. Complex And Antecedent Logic Network

Complex Or Antecedent

The logic network structure for an antecedent containing the
Or connective 1is very similar to that of the complex And
antecedent. Note the added presence of a NotGate and an OrGate
rather than an AndGate.

B.1.2 Rule to Logic Network Translation Strategies

The translation from a rule representation to the logic
network representation occurs in two steps. The first is to
translate the rule base into templates. Each template is then
instantiated (copied) for each object that the template’s
originating rules range over.
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Figure B-5, Complex Or Antecedent Logic Network

In translating rules to logic network templates, each rule
translates into a ThenGate whose input is connected from the
translated antecedent and whose output 1is connected to the
translated consequent.

Slot value comparisons are generally translated into
predicates. If a rule’s consequent sets a slot that appears in
another translated rule’s antecedent as part of a comparison
operation, a connection is required from the first rule’s
consequent logic network to the predicate which represents the slot
value comparison. This process has the effect of combining logic
networks into larger ones so that any one self-contained logic
network is the result of several inter-related rules.
Additionally, logic networks are combined when the same slot value
comparison appears in the antecedent of separate rules. Both
appearances are translated into exactly the same predicate.

Slots were translated if every appearance of the slot name
appeared in a comparison or assignment to an explicit value.
Therefore, slots were not translated if thcy appeared anywhere in
a function call or were compared to or assigned to or from another
slot. These restrictions are not required in a more extensive
implementation. A more extensive implementation could translate
slot to slot comparisons in a number of ways. One way is to keep
track of the possible values a slot can store based on assignments
to it. Another method for use with numeric slots is to store the
slot in an input real-valued neuron or in a binary representation.
Either would allow comparisons using neuron-implemented comparison
functions (<, =, etc.).
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B.2 Logic Network to Neural Network Translation
B.2.1 w t Re entati

There are two types of elements in a neural network: neurons
and virtual processors. Virtual processors behave identically to
their logic network counterparts, except that they read and set the
outputs of neurons instead of predicates. There are three types of
neurons - input, output and hidden. Output neurons correspond to
trigger predicates. A virtual processor is attached to each one.
Each input neuron is set by a virtual processor. Output and hidden
neurons behave identically in that each computes its value by
performing its output function on the weighted sum of its inputs.
Input neuron outputs are not computed but simply set by virtual
processors.

Either binary or real-valued neurons could have been used in
the network. Because we are translating a three-valued logic, 2
binary neurons are required to represent one truth value. If real-
valued neurons are used, either two or one unit can be used. We
developed translation strategies for both neuron types.

In our translator, the neurons are real-valued with a logistic
activation function. Their outputs must be between 0 and 1.
Furthermore, the network is designed such that the outputs will
fall into three ranges corresponding to F, U, and T, respectively.
The three ranges are 0 - 0.1, 0.4 - 0.6, and
0.9 - 1.

To simulate the network of neurons and virtual processors the
following actions are taken.

- All neurons are initialized to 0.5 output (unknown)

- The following two steps are repeated until no virtual
processors execute
- Simulate the network
- Run all the applicable virtual processors

B.2.2 Logic Network to Neural Network Translation

Real-valued neurons have three ranges defined to correspond to
the three possible truth values. These ranges are defined in terms
of constants. The translation strategies from logic network to
neural network are also defined in terms of these constants to
facilitate experimentation in future work. The constants are
defined below.

Truth Value Range

False 0 -> a
Unknown b ->c¢
True d -> 1
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In order to facilitate 1logic network to neural network
translation it is convenient to keep an ordered relationship among
the binary sums of truth values. For example, it is convenient for
the sum of any true and unknown value to be less than the sum of
any two true values. This constrains the values of the constants
that define the ranges. These constraints are shown below.

Constraint Meaning

1 + ¢c < 2d true + unknown < true + true

22 <1 + Db unknown + unknown < true + unknown
c +a<2b unknown + false < unknown + unknown
2a < b false + false < unknown + false

A set of values which we used which satisfy these constraints
are a = .1, b= .4, ¢c = .6, and d = .9.

Each predicate translates into one neuron. Each virtual
processor that monitors a trigger predicate will instead monitor an
associated neuron. Each virtual processor which sets a predicate,
instead sets the corresponding neuron.

Each gate is translated into a group of neurons which computes
the appropriate output. The neural translation for each gate is
shown below. The weights and biases are functions of the range
constants as well as of two other constants, m and M. These
constants are used to force logical values toward 0, 0.5 and 1.
They currently are defined to produce large weights and biases (m
= 10, M = 50), but should be redefined as smaller numbers to
facilitate adaptation. This would be one subject of future
research.

The neural configurations corresponding to the various logic
network gates are given below. The circles indicate neurons and
the solid lines, connections. Charts are given showing the biases
and weights for each configuration.

: _Rea eu c igurati

And Gate Translation

Weights Biases

From To Weight Equation Neuron Bias

N5 N2 M N1 -m/2

N5 N3 M N2 -M(a+b)/2

N6 N3 M N3 -M(1+c+2d)/2
N6 N4 M N4 -M(a+b)/2

N2 N1 m/4
N3 NI m
M4 N1 m/a
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Figure B-6, Real And Configuration

Or: Real Neuron Configuratio

Or Gate Translation

Weights
From To
NS N2
N5 N3
N6 N3
N6 N4
N2 N1
N3 N1
M4 N1

Biases
Weight Equation Neuron Bias
M N1 -m/2
M N2 -M(c+d)/2
M N3 -M(2a+b)/2 -
M N4 -M(c+d)/2
m .
m/2
m
Figure B-7. Real Or Configuration
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Nct: Real Neuron Configuration
Figure B-8, Real Not Configuration

hen: Real Neuron Configuratio

O!@:

Figure B-9, Real Then Configuration

Real Neuron Confiquratio

nknown:

Unknown? Gate Translation

Weights
From To
N4 N2
N4 N3
N2 N1
N3 N1

Weight Equation
-2m

2m

m

m

Biases

Neuron
Nl
N2
N3
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Figure B-10, Real Unknown Configuration

The above weights and biases assume the logistic activation
function, O(s,t) = 1/(1 + exp(-(s + t))), where s = weighted sum of
the neuron’s inputs and t = threshold, or bias, a constant adjusted
during learning. If a different activation function were used, the
weights of the translated system would need to change, but the
translation corcepts would be the same.

Translation strategies were also developed for binary neurons.
With binary neurons, two neurons are required to represent one
predicate. One neuron represents Known/Unknown the other
represents True/False. The allowed values for a set of two neurons
is shown below.

T/F K/U

1 1 True

0 1 False

0 0 Unknown

1 0 Unallowed

The advantage of using binary neurons over real-valued ones is
that binary neurons are faster than real-valued (integer vs real-
number arithmetic) especially with feedback connections. The
disadvantage is that with this scheme of values, the network could
be harder to train than the real-valued counterpart.




TF KU

Figure B-11, Binary

Or: Binary Neuron Configuration

TF KV

TF KU

And Configuration

TF KV

Figure B-12, Binary Or Configuration
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TIF i

Figure B-13, Binary Not Configuration

hen: Bina Neuron Confiquration

i

0.5

O

TIF K
Figure B-14, Binary Then Configuration
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B.3 Additional Translation Strategies
B.3.1 Rating Summation

The first step is to identify virtual processors that sum a
polygon’s rating. These are always associated with a rule
consequent. Next, we identify the value which is added to (or
subtracted from) the Rating. The translator then finds the neuron
which triggers activation of the virtual processor as shown in
figure B-15. That triggering association is broken and a
connection from the trigger neuron is created. That connection is
weighted with the value that would be added to the rating and
attached to a summing neuron for each polygon as shown in Figure

B-16.
Tn%er r - _ - - —
@) -------- X pRating = p:Rating - 3 D
\\___,/‘
.’/—\\
Trigger ) — .
( Neixron ) """"" "/\ pRating =p:Rating +35 >

S

Figure B-15, Before Translation

./ ’—\\
(Summing\j
x,\Neuron {L
.\\; ¢// -\\
™~
.
\,\..3
\~\~\‘
+5
\_\ /‘“\.\ )
Trgger N . .
Neuron /,\\*\ pRating = o Rating - 3 >
Trgger
NEﬁ%n --------- x pRating = D:Rating +5 »
Figure B-16. After Translation
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The summing Neuron simply sums its input and passes the rating
on to the next stage.

B.3.2 Route Planning

The overall goal of the route planning translation is to plan
a route through a series of polygons using a neural network. This
network finds a minimum cost route to all polygons from a starting
polygon. The input to the translation process is a 1list of
polygons. With each polygon is a list of the adjacent ones. The
output is a neural network which calculates a minimum cost route.
The inputs to the created neural network are the cost to traverse
the polygon and the polygon in which to start the route. The
output is the minimum cost route to all polygons from the starting
one.

The translation is a two-step process. The first step is to
convert the network of polygons (each polygon is ‘attached’ to its
neighbors) to a network of gates. Each polygon maps to a certain
set of gates based on the number of neighbors it has. A gate has
multiple inputs and one output which computes some simple function
of the inputs. The second step is to convert the gate network to
a network of neurons. Each gate maps to a set of neurons which
perform its function. Thase two steps are described in more detail
below.

In the first step, each polygon is converted into a network of
the following components:

1 Starting Polygon (Network Input) node which can be set to 0
(this is the starting polygon) or infinity (this is not the
starting polygon).

1 Local Cost (Network Input) node which can be any positive
number. This input gives the cost to traverse the polygon.

N Which Neighbor (Network Output) nodes whose names are the
name of the corresponding polygon concatenated with the names
of the corresponding neighbor polygons. N is the number of
neighbors. This network output gives which neighbor the
minimum path comes from.

N Input Neighbor Cost lines (N is different for each polygon)
corresponding to the polygon’s N Neighbors. These connections
originate with the networks of the neighboring polygons.

1 Min Gate with N+1 inputs. The inputs are the N Input

Neighbor Cost lines and the Starting Polygon Network Input
Node. A Min Gate outputs the minimum value of any of its

inputs.
N SameGates. Each gate has two inputs, an Input Neighbor cost

53




line and the Min Gate output. The output of each SameGate is
connected to a Which Neighbor node. A SameGate outputs a 0
if its two inputs are the same and a positive value if they
are different.

1 Sum Gate - 2 inputs, the output of the Mir Gate and the
Local Cost Node. The output of the Sum Gate .s used as an
Input Neighbor cost 1line for neighborin polygons and
represents the minimum cost for the minimum path from the
starting polygon to this one.

Figure B-17 is an example for one polygon.

Output Cost Poly 1 Poly 2 Poly 3
is best 1is best 1is best

Sum Gate Same Same Same |
Gate Gate Gatel
l 7 T\
Extra IMin Gate
Cost ]

I
Starting Cost 1 Cost 2 Cost 3
Polygon From Adjacent Polygcons (N=3)
All costs initialized to infinity.

Figure B-17, Route Planner Fragment for One Polygon

The second step is the translation from the gate network to a
neural network. A Network Output Node can be translated to a
single output neuron. A Network Input node can be translated into
an input neuron. A Min Gate must first be converted into a network
of binary min gates. The translation of Binary Min Gates, Same
Gates, and Sum Gates is given by the following figures.
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Input 1 Input 2

Figure B-18.
Binary Min Gate

Output

Input 1 Input 2

Figure B-19,
Same Gate
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1 1
Input Input
1 2

Figure B-20,
Sum Gate




APPENDIX C PROTOTYPE DESCRIPTION

This section will describe the prototype as a logical ordering
of events.

A rule-base was created which rates polygons as to their
desirability for helicopter traversal based on information about
that polygon. This rule-base could be easily changed and the
succeeding steps repeated.

The rule-base was translated into a network of neurons and
virtual processors using the generic translation strategies. That
network was then translated into a network of only neurons through
the use of specialized strategies.

The route planning neural network was created by first reading
the polygon information from a file. A connectivity map was
automatically generated which specifies which polygons border each
other. That connectivity map is translated into a neural network
which finds the least cost route from an input vector of costs.

After the polygons are read in, they can be displayed in the
prototype as in Figure C-1.

L

—“—““—“——~—;~—_~

R e
I
C

/?U
-

7

Figure C-1, Polygon Map Display
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The polygon information then goes through a preprocessing
step. To calculate Linearity, the points of a polygon are treated
as random and the covariance between the X and Y coordinates of the
points is calculated. Some adjustments must be made to allow for
the average slope of the polygon’s points in the X-Y plane. To
determine Length, the code calculates every possible distance
between the points of the polygon and uses the maximum. The points
which give that maximum distance are saved for use by the area
calculation method.

At this point the polygon’s information might be edited to
correct or update the original information which was read in. 1In
preparation to run the network, the input vector is assembled from
the polygon’s information.

All of the above steps have occurred ahead of time, some
taking significant processing time. The following steps would all
occur at demonstration time. Any polygon can be re-edited and only
that new information is written over the old information in the
input vector. Then the neural network is run. The first stage of
the network rates the factors associated with each polygon. The
next stage sums those ratings into a cost. The last stage of the
network uses those costs to plan a minimum cost route to every
polygon from the current one. Finally, this route can be displayed
as in Figure C-2.

Figure C-2. Route Display
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APPENDIX D KAPPA KNOWLEDGE BASE

Below is a listing of the prototype AAA Planner’s knowledge
base. The knowledge base was implemented in KAPPA and includes
rules, methods called in rules, and slots.

JRRREAR KR kR Ihhhhhhhhhhhkhhhhkkkhkk
*x** RULE: AAWRule
e I T T T T

MakeRule( AAWRule, [p|Polygons],

Identity ( p:AAWCoverage ) #= TRUE ,
p:Rating = p:Rating - 10 );

/*************************************
*k%x* RULE: AAWNotRule
*************************************/
MakeRule( AAWNotRule, [p]|Polygons],
Identity ( p:AAWCoverage ) #= FALSE ,
p:Rating = p:Rating + 10 );

/*************************************
*x%% RULE: EGU
*tj**********************************/
MakeRule( EGU, [p|Polygons],
Identity ( p:EnemyGroundUnits ) #= TRUE ,
p:Rating = p:Rating - 5 );

/*************************************
*%%+ RULE: EQUNot
*************************************/
MakeRule( EQUNot, [p|Polygons],
Identity ( p:EnemyGroundUnits ) #= FALSE ,
p:Rating = p:Rating + £ );

/*************************************

**%% RULE: Enemy
Ahhkhkhhhhhkhhhhhhhhhhhhhkhhhhkkhkkkkhkkk /

MakeRule( Enemy, [p|Polygons],
Identity ( p:Owned ) #= Threat ,
p:Rating = p:Rating - 5 );

/*************************************

*%*%* RULE: Friendly
AhhhAARKRRRRKRKRRRRRARIKRRRRRA A A Ak ARk /

MakeRule( Friendly, [p|Polygons],
Identity ( p:Owned ) #= Friendly,
p:Rating = p:Rating + 5 );

/*************************************

**%x%* RULE: TrafficableNot
L T T T I

MakeRule( TrafficableNot, [p|Polygons],
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p:Owned #= Enemy And
Identity ( p:Trafficable ) #= FALSE ,
p:Rating = p:Rating + 2 );

JREEERERRKIARRIIRR Ak ke kA kA kA hhh kK&
***k RULE: Trafficable
KAERIRARIRIKRIRARARAIRIRARAR KA KRR Rk k /

MakeRule( Trafficable, [p|Polygons],

p:Owned #= Enemy And p:Trafficable #= TRUE ,
p:Rating = p:Rating - 2 );

/*************************************

*%x** RULE: CoveredByDustSnow
*************************************/
MakeRule( CoveredByDustSnow, [p|Polygons],

Identity ( p:CoveredBy ) #= Snow Or p:CoveredBy #= Dust,
p:Rating = p:Rating - 2 );

/*************************************

***x* RULE: CoveredByWater
*************************************/
MakeRule( CoveredByWater, [p|Polygons],
p:CoveredBy #= Water And Identity ( p:Width ) > 50,
p:Rating = p:Rating - 4 );

/*************************************

*%*%* RULE: CoveredByVegetation
*************************************/
MakeRule( CoveredByVegetation, [p|Polygons],
p:CoveredBy #= Vegetation,
p:Rating = p:Rating + 1 );

/*************************************

*k** RULE: Forest
*************************************/

MakeRule( Forest, [p|Polygons],

Identity ( p:Forest #= Heavy ) And p:CoveredBy #= Snow,
p:Rating = p:Rating - 4 );

/*************************************

**xk* RULE: Checkpoints
*************************************/

MakeRule( Checkpoints, [p|Polygons}],
Identity ( p:CheckPoints ) > o0,
p:Rating = p:Rating + 1 );

/*************************************

*%*%* RULE: ManMade
hkkhkhhhhkhhhhhhhhhhhhhhhhhhhkkhhhhhkhk /

MakeRule( ManMade, [p|Polygons],
Identity ( p:ManMade ) #= TRUE ,
p:Rating = p:Rating - 2 );
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/*************************************

**%* RULE: ConstructionDensitySub
*************************************/
MakeRule( ConstructionDensitySub, [p|Polygons],
Identity ( p:ConstructionDensity ) #= Suburban,
p:Rating = p:Rating - 1 );

/*************************************
*%%#* RULE: ConstructionDensityUrban
kkkkkhkhkkkhkhhhkhkhkhkhkhkhkhkhhkhhkhkhkkkhkhkhkkkkik
MakeRule( ConstructionDensityUrban, [p|Polygons],
p:ConstructionDensity #= Urban,
p:Rating = p:Rating - 2 );

/*************************************

*%*x%* RULE: ConstructionDensityMetro
*************************************/
MakeRule( ConstructionDensityMetro, [p|Polygons],
p:ConstructionDensity #= Metropolitan,
p:Rating = p:Rating - 3 );

/*************************************
**k*%* RULE: ConstructionDensistyUnin
*************************************/
MakeRule( ConstructionDensistyUnin, [p|Polygons],
p:ConstructionDensity #= Uninhabited,
p:Rating = p:Rating + 2 );

/*************************************

*x*x* RULE: VisibilityGood
*************************************/
MakeRule( VisibilityGood, [p|Polygons],
Identity ( p:Visibility ) #= Good,
p:Rating = p:Rating + 1 );

/*************************************
**** RULE: VisibilityPoor
*************************************/
MakeRule( VisibilityPoor, [p|Polygons],
p:Visibility #= Poor,
p:Rating = p:Rating - 5 );

/*************************************
x%x*% RULE: Visibility
*************************************/
MakeRule( Visibility, [p|Polygons],
p:Visibility #= Fair,
p:Rating = p:Rating - 2 );

/*************************************

*%%%* RULE: FFire
S T LY
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MakeRule( FFire, [p|Polygons],
Identity ( p:FriendlyFire ) #= Originating Or p:FriendlyFire #=
Targeted,
p:Rating = p:Rating - 4 );

/*************************************

**%* RULE: ObstructionsHigh
*************************************/
MakeRule( ObkstructionsHigh, [p|Polygons],
Identity ( p:ObstructionDensity ) #= High,
p:Rating = p:Rating - 2 );

/*************************************

**x* RULE: ObstructionsNone
*************************************/
MakeRule( ObstructionsNone, [p|Polygons],
p:ObstructionDensity #= None,
p:Rating = p:Rating + 2 );

/*************************************

*%k%x* RULE: NoGorges
*************************************/
MakeRule( NoGorges, [p|Polygons],
Identity ( p:AverageDepth ) > 50 And Identity ( p:Width < 2 #*
p:AverageDepth ) #= TRUE ,
p:Rating = p:Rating - 6 * p:AverageDepth /
p:Width );

/*************************************

**** RULE: LinearityPoor
*************************************/
MakeRule( LinearityPoor, [p|Polygons],
Identity ( p:Linearity ) >= 0.92 And p:Linearity < 0.97,
p:Rating = p:Rating - 2 );

/*************************************

***%* RULE: LinearityBad
*************************************/
MakeRule( LinearityBad, [p|Polygons],
p:Linearity >= 0.97,
p:Rating = p:Rating - 5 );

/*************************************

**%*%* RULE: AridStream
IR AARRIIRRIIRRI KRR I AIRAIRRARRA KRR AR /

MakeRule( AridStream, [p|Polygons],

Identity ( p:ClimateType ) #= Arid And p:CoveredBy #= Water,
p:Rating = p:Rating + 2 );

/*************************************

***%* RULE: GentleDepression
*************************************/
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MakeRule( GentleDepression, [p|Polygons],

Identity ( p:Depression ) #= TRUE And Identity ( p:Width > 4 *
p:AverageDepth ) #= TRUE ,

p:Rating = p:Rating + 1 );

/*************************************

**x* RULE: AridDepression
*************************************/
MakeRule( AridDepression, [p|Polygons],
p:ClimateType #= Arid And p:Depression #= TRUE,
p:Rating = p:Rating + 1 );

/*************************************

*%%** CLASS: Polygons
*************************************/

MakeClass( Polygons, Belvoir );

/************** METHOD: DrawPoly **************/
MakeMethod( Polygons, DrawPoly, [],
Let [len LengthList( Self:PointsX )]
If ( len > 0 )
Then
MoveTo (
GetNthElem( Self:PointsX, 1 ),
GetNthElem( Self:PointsY, 1 ) ):
For i {2 len ]
LineTo(
GetNthElem( Self:PointsX, i ),
GetNthElem( Self:PointsY, i ) ):
LineTo(
GetNthElem( Self:PointsX, 1 ),
GetNthElem( Self:Pointsy, 1 ) ):

y )

/************** METHOD: CalculateLength **************/
MakeMethod( Polygons, CalculatelLength, [],

{

ClearList( Self:EndPoints );

Self:Length = 0;

Let [N LengthList( Self:PointsX )]

For i {1 N ]}
Let [S i + +1]
For j [S N ]
Let [d Distance(
GetNthElem( Self:PointsX, i ),

GetNthElem( Self:PointsyY,

i)
’ GetNthElem( Self:PointsX, j ),
GetNthElem( Self:Pointsy,
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3]
{

If ( 4 > Self:Length )
Then (
Self:Length = 4;
SetValue( Self:EndPoints, i, j );
)3

y )

/************** METHOD: CalculateArea **************/
MakeMethod( Polygons, CalculateArea, [xslot yslot ],
{
Self:Area = O;
Self :PCATopLength = 0;
Let [pl GetNthElem( Self:EndPoints, 1 )]
[p2 GetNthElem( Self:EndPoints, 2 )]
(n LengthList( Self:xslot )]
Let [m ( GetNthElem( Self:yslot, p2 ) -

GetNthElem( Self:yslot, p1 ) ) /
( GetNthElem( Self:xslot, p2 ) -
GetNthElem( Self:xslot, pl ) )]
Let [b GetNthElem( Self:yslot, pl ) - m *
)

GetNthElem( Self:xslot, pl
{
For i [pl ( ( p2 - 1) ) 1]
Let [x1 GetNthElem( Self:xslot, i )]
[yl GetNthElem( Self:yslot, i )]
[x2 GetNthElem( Self:xslot,
i+ +1 )]
[y2 GetNthElem( Self:yslot,
i+ +1 )]
{
Self:Area = Self:Area +
TrapezoidArea( Self:PCATopLength, x1,
yl, x2, y2, m, b, Self, PCATopLength

)i
Self :PCATopLength = 0;
Self:PCAi = p2;
While (( Self:PCAi != pl ))
{
Let [x1 GetNthElem( Self:xslot, Self:PCAi )]
[yl GetNthElem( Self:yslot, Self:PCAi )]
[x2 GetNthElem( Self:xslot,
If ( Self:PCAi < n )
Then ( Self:PCAi +
+1 )
Else 1 )]
(Y2 GetNthElem( Self:yslot,
If ( Self:PCAi < n )
Then ( Self:PCAi +
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1

+1 )
Else 1 )]
{
Self:Area =
Self:Area +
TrapezoidArea( Self:PCATopLength, x1,
vl, x2, Y2, m, b, Self,
PCATopLength );
}:
Self:PCAi = Self:PCAi + 1;
If ( Self:PCAi > n )
Then Self:PCAi = 1;
)i
}i
Self:Area = Abs( Self:Area );
} )i

JXkkkkkkkkkkkxx METHOD: CallCalculateArea kkhkkhkhkkkhkkkk /
MakeMethod( Polygons, CallCalculateArea, [],
SendMessage( Self, CalculateArea, PointsX, PointsY ) );

/************** METHOD: CalculateLinearity **************/
MakeMethod( Polygons, CalculateLinearity, [slotname ],
Let [N LengthList( Self:PointsX )]
Let [XBar Average( Self:PointsX )]
[YBar Average( Self:PointsY )]
{
Self:PCLStdX = 0;
EnumList( Self:PointsX, X,
Self:PCLStdX = Self:PCLStdX +
( x - XBar ) * 2 ):
Self:PCLStdX =
Sqrt( Self:PCLStdX ):
Self:PCLStdY = 0;
EnumList( Self:PointsY, vy,
Self:PCLStdY = Self:PCLStdY +
(y-YBar ) ~ 2 );
Self:PCLStdY =
Sqrt( Self:PCLsStdy );
Self:PCLCovar = 0;
Self:PCLStdXprime = 0;
For i {1 N ]
Let [x GetNthElem( Self:PointsX, i )]
[y GetNthElem( Self:PointsY, i )]
Let [xprime XBar + y - YBar + 1.4142
*

{ Self:PCLStdY * x -
Self:PCLStdX * y

Self :PCLStdY * XBar
+
Self:PCLStdX * YBar )

64




/
sSqrt(
Self:PCLStdX ~ 2
+
Self:pPCLStdy ~

2 )]
{

Self :PCLStdXprime =
Self:PCLStdXprime +
( xprime - XBar ) * 2;
Self:PCLCovar =
Self:PCLCovar +
( xprime - XBar ) *
( y - YBar );
}:
Self:PCLStdXprime =
Sqgrt( Self:PCLStdXprime );
Self:Linearity =
( Self:PCLCovar / Self:PCLStdy /
Self :PCLStdXprime ) ~ 2;

y )

Jrkkkkkkkkkkk*x METHOD: CalculateWidth kkkkkkkkkkkkkk /
MakeMethod( Polygons, Calculatewidth, [],
Self:Width = Self:Area / Self:Length );

MakeSlot( Polygons:PointsX );
SetSlotOption( Polygons:PointsX, MULTIPLE ):
ClearList( Polygons:PointsX ):;

MakeSlot( Polygons:PointsyY ):
SetSlotOption( Polygons:PointsY, MULTIPLE );
ClearList( Polygons:PointsY );

MakeSlot( Polygons:Label );

MakeSlot( Polygons:EdgeAdjacent );

SetSlotOption( Polygons:EdgeAdjacent, MULTIPLE );
ClearList( Polygons:EdgeAdjacent );

MakeSlot( Polygons:PointAdjacent );

SetSlotOption( Polygons:PointAdjacent, MULTIPLE ):
ClearList( Polygons:PointAdjacent );

‘lakeSlot( Polygons:Length );
SetSlotOption( Polygons:Length, VALUE_TYPE, NUMBER ):;

MakeSlot( Polygons:EndPoints );
SetSlotOption( Polygons:EndPoints, MULTIPLE );
ClearlList( Polygons:EndPoints );

MakeSlot( Polygons:Owned );
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SetSlotOption( Polygons:Owned, ALLOWABLE_VALUES, Friendly, Threat,
None );

MakeSlot( Polygons:AAWCoverage );
SetSlotOption( Polygons:AAWCoverage, VALUE_TYPE, BOOLEAN );

MakeSlot( Polygons:EnemyGroundUnits );
SetSlotOption( Polygons:EnemyGroundUnits, VALUE_TYPE, BOOLEAN );

MakeSlot( Polygons:Rating );
SetSlotOption( Polygons:Rating, VALUE_TYPE, NUMBER ):
Polygons:Rating = 0;

MakeSlot( Polygons:Trafficable );
SetSlotOption( Polygons:Trafficable, VALUE_TYPE, BOOLEAN );

MakeSlot( Polygons:CoveredBy ):
SetSlotOption( Polygons:CoveredBy, ALLOWABLE_VALUES, Dust, Snow,
Water, Rocks, Vegetation );

MakeSlot( Polygons:Forest ):
SetSlotOption( Polygons:Forest, ALLOWABLE_VALUES, None, Slight,
Medium, Heavy ):

MakeSlot( Polygons:CheckPoints ); _
SetSlotOption( Polygons:CheckPoints, VALUE_TYPE, NUMBER ):;
SetSlotOption( Polygons:CheckPoints, MINIMUM_VALUE, O ):

MakeSlot( Polygons:ConstructionDensity ):
SetSlotOption( Polygons:ConstructionDensity, ALLOWABLE_VALUES,
Uninhabited, Rural, Suburban, Urban, Metropolitan );

MakeSlot( Polygons:ObstructionDensity ):
SetSlotOption( Polygons:ObstructionDensity, ALLOWABLE_VALUES, High,
Low, None ):

MakeSlot( Polygons:Visibility ):
SetSlotOption( Polygons:Visibility, ALLOWABLE_VALUES, Good, Fair,
Poor ):

MakeSlot( Polygons:ClimateType );
SetSlotOption( Polygons:ClimateType, ALLOWABLE_VALUES, Arid,
Tropical, SubTropical, Normal, Artic );

MakeSlot( Polygons:ManMade );
SetSlotOption( Polygons:ManMade, VALUE_TYPE, BOOLEAN );
MakeSlot( Polygons:FriendlyFire );

SetSlotOption( Polygons:FriendlyFire, ALLOWABLE_VALUES, None,
Originating, Targeted ):
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MakeSlot( Polygons:AverageDepth ):;

SetSlotOption( Polygons:AverageDepth, VALUE_TYPE, NUMBER );
SetSlotOption( Polygons:AverageDepth, MINIMUM_VALUE, 0 ):
MakeSlot( Polygons:Linearity );

SetSlotOption( Polygcns:Linearity, VALUE_TYPE, NUMBER );
SetSlotOption( Polygons:Linearity, IF_NEEDED, CalculateLinearity );

MakeSlot( Polygons:Depression );
SetSlotOption( Polygons:Depression, VALUE_TYPE, BOOLEAN );

MakeSlot( Polygons:PCLStdX );

MakeSlot( Polygons:PCLStdY );

MakeSlot( Polygons:PCLCovar );

MakeSlot( Polygons:PCLStdXprime );

MakeSlot( Polygons:Width );

MakeSlot( Polygons:CostStack ):;

SetSlotOption( Polygons:CostStack, MULTIPLE );
SetSlotOption( Polygons:CostStack, VALUE_TYPE, NUMBER );
Clearlist( Polygons:CostStack );

MakeSlot( Polygons:WhoStack );

SetSlotOption( Polygons:WhoStack, MULTIPLE );
SetSlotOption( Polygons:WhoStack, VALUE_TYPE, OBJECT ):
SetSlotOption( Polygons:WhoStack, ALLOWABLE_CLASSES, Polygons );
ClearList( Polygons:WhoStack );

MakeSlot( Polygons:Cost );

MakeSlot( Polygons:Who );

MakeSlot( Polygons:PotentialCost ):
SetSlotOption( Polygons:PotentialCost, VALUE_TYPE, NUMBER );

MakeSlot( Polygons:PotentialWho );

SetSlotOption( Polvagons:PotentialWho, VALUE_TYPE, OBJECT );
SetSlotOption( Polygons:ipPotenti alWho, ALLOWABLE CLASSES, Pol_ygons

)3

MakeSlot( Polvaons:Uvbdated );
SetSlotOontion( Polvaons:Undated, VALUE_TYPE, BOOLEAN ):

MakeSlot( Polvaons:Area 1};
MakeSlot( Polvaons:PCATooLenath );
MakeSlot( Polvaons:PCAi \5
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